教师头像
研究生主管:王弋
ywang@ruc.edu.cn


教育背景

中国人民大学化学系,学士(2007.9-2011.7)

中国人民大学化学系,硕士(转博)(2011.9-2013.7)

中国人民大学化学系,博士(2013.9-2016.6)


工作经历

新加坡国立大学化学系,博士后(2016.6-2018.12)

东京大学化学系,研究助理教授(2019.2-2020.5)

中国人民大学化学系,讲师(2020.11-2021.8)

中国人民大学化学系,副教授(2021.8-至今)


研究兴趣

超快光谱时间分辨光电技术

纳米晶化学合成非线性光学性质研究

钙钛矿光伏制备光电转换机理研究


论文发表:

1. X. Wang,§ Y. Sun,§ Y. Wang,* X.-C. Ai, and J.-P. Zhang, Lewis Base Plays a Double-Edged Sword Role in Trap State Engineering of Perovskite Polycrystals, J. Phys. Chem. Lett., 2022, 13:1571.

2. S. Yuan,§ H.-Y. Wang,§ F. Lou, X. Wang, Y. Wang,* Y. Qin, X.-C. Ai, J.-P. Zhang, Polarization-induced Trap States in Perovskite Solar Cells Revealed by Circuit-switched Transient Photoelectric Technique, J. Phys. Chem. C., 2022, 126:3696.

3. D. Zhu, Y. Sun, S. Yuan, R. Gao, Y. Wang,* X.-C. Ai, J.-P. Zhang, Intragap State Engineering for Tunable Single-Photon Upconversion Photoluminescence of Lead Halide Perovskite, J. Phys. Chem. C., 2022, 126:2477.

4. Y. Du, D. Zhu, Q. Cai, S. Yuan, G. Shen, P. Dong, C. Mu*, Y. Wang,* X.-C. Ai,* Spacer Engineering of Thiophene-based 2D/3D Hybrid Perovskites for Stable and Efficient Solar Cells, J. Phys. Chem. C., 2022, 126:3351.

5. J. Wu, S. Yuan, D. Zhu, Y. Li, H.-Y. Wang, H. Dong, Y., Qin,* Y. Wang,* X.-C. Ai*, Silicon Dioxide Nanoparticles Increase the Incidence Depth of Short-Wavelength Light in Active Layer for High-Performance Perovskite Solar Cells, J. Phys. Chem. C., 2022, 126:7400.

6. S. Miao,§ S. Yuan,§ D. Zhu, Q. Cai, H.-Y. Wang, Y. Wang,* Y. Qin*, X.-C. Ai*, Mesoporous TiO2 Layer Suppresses Ion Accumulation in Perovskite Solar Cells, Phys. Chem. Chem. Phys., 2022, in press.

7. Y. Sun,§ X. Wang,§ X. Wang, J. Gao, Y. Wang,* X.-C. Ai, J.-P. Zhang, Low-Temperature Preparation of High-Quality Perovskite Polycrystalline Films via Crystallization Kinetics Engineering, ChemPhysChem, 2022, in press.

8. F. Lou, S. Yuan, X. Wang, H.-Y. Wang,* Y. Wang,* Y. Qin, X.-C. Ai, J.-P. Zhang, Distinguishing the Migration Time Scale of Ion Species in Perovskite Solar Cells. Chem. Phys. Lett., 2022, 796:139570.

9. Y. Sun,§ X. Wang,§ H.-Y. Wang, S. Yuan, Y. Wang,* X.-C. Ai,* J.-P. Zhang, Lewis Base-Mediated Perovskite Crystallization as Revealed by In Situ, Real-Time Optical Absorption Spectroscopy, J. Phys. Chem. Lett., 2021, 12:5357.

10. X. Liang, Y. Guo, S. Yuan, D. Zhu, Y. Wang,* Y. Qin, J.-P. Zhang, X.-C. Ai,* Simultaneous Transport Promotion and Recombination Suppression in Perovskite Solar Cells by Defect Passivation with Li-Doped Graphitic Carbon Nitride, J. Phys. Chem. C, 2021, 125:5525.

11. Y. Guo, S. Yuan, D. Zhu, M. Yu, H.-Y. Wang, J. Lin, Y. Wang, Y. Qin, J.-P. Zhang, X.-C. Ai, Influence of the MACl Additive on Grain Boundaries, Trap-State Properties, and Charge Dynamics in Perovskite Solar Cells, Phys. Chem. Chem. Phys., 2021, 23:6162.

12. M.-Y. Hao, H.-Y. Wang, Y. Wang, Y. Qin, J.-P. Zhang, X.-C. Ai, Effect of Energetic Distribution of Trap States on Fill Factor in Perovskite Solar Cells, J. Power Sources, 2020, 479:229077.

13. M. J. H. Tan, Y. Wang,* Y. Chan,* Solution-based Green Amplified Spontaneous Emission from Colloidal Perovskite Nanocrystals Exhibiting High Stability, Appl. Phys. Lett., 2019, 114:183101.

14. Y. Wang, M. Zhi, Y.-Q. Chang, J.-P. Zhang, Y. Chan, Stable, Ultralow Threshold Amplified Spontaneous Emission from CsPbBr3 Nanoparticles Exhibiting Trion Gain, Nano Lett., 2018, 18:4976.

15. Y. Wang, M. Zhi, Y. Chan, Delayed Exciton Formation Involving Energetically Shallow Trap States in Colloidal CsPbBr3 Quantum Dots, J. Phys. Chem. C, 2017, 121:28498.

16. Y. Wang, H.-Y. Wang, M. Yu, L.-M. Fu, Y. Qin, J.-P Zhang, X.-C. Ai, The Influence of Morphology and PbI2 on the Intrinsic Trap State Distribution in Perovskite Films Determined by Using Temperature-Dependent Fluorescence Spectroscopy, ChemPhysChem, 2017, 18:310.

17. Y. Wang, H.-Y. Wang, J. Han, M. Yu, M.-Y. Hao, Y. Qin, L.-M. Fu, J.-P. Zhang, X.-C. Ai, The Influence of Structural Configuration on Charge Accumulation, Transport, Recombination, and Hysteresis in Perovskite Solar Cells, Energy Technol. 2017, 5:442.

18. H.-Y. Wang,§ Y. Wang,§ M.-Y. Hao, Y Qin, L.-M. Fu, Z.-X. Guo, X.-C. Ai, J.-P. Zhang, Multiple-Trapping Model for the Charge Recombination Dynamics in Mesoporous-Structured Perovskite Solar Cells, ChemSusChem, 2017, 10:4872.

19. S. Gupta, W.-Y. Wu, S. Chakrabortty, M. Li, Y. Wang, X. Ong, Y. Chan, Hierarchical Multicomponent Nanoheterostructures via Facet-to-Facet Attachment of Anisotropic Semiconductor Nanoparticles, Chem. Mater., 2017, 29:9075.

20. M. Yu,§ Y. Wang,§ H.-Y. Wang, J. Han, Y. Qin, J.-P. Zhang, X.-C. Ai, The Influence of Morphology on Charge Transport/Recombination Dynamics in Planar Perovskite Solar Cells, Chem. Phys. Lett., 2016, 662:257.

21. H.-Y. Wang,§ Y. Wang,§ M. Yu, J. Han, Z.-X. Guo, X.-C. Ai, J.-P. Zhang, Y. Qin, Mechanism of Biphasic Charge Recombination and Accumulation in TiO2 Mesoporous Structured Perovskite Solar Cells, Phys. Chem. Chem. Phys., 2016, 18:12128.

22. J. Han, H.-Y. Wang, Y. Wang, M. Yu, S. Yuan, P. Sun, Y. Qin, Z.-X. Guo, J.-P. Zhang, X.-C. Ai, Efficient Promotion of Charge Separation and Suppression of Charge Recombination by Blending PCBM and its Dimer as Electron Transport Layer in Inverted Perovskite Solar Cells, RSC Adv., 2016, 6:112512.

23. Y. Wang, H.-Y. Wang, M. Yu, L.-M. Fu, Y. Qin, J.-P Zhang, X.-C. Ai, Trap-Limited Charge Recombination in Intrinsic Perovskite Film and Meso-Superstructured Perovskite Solar Cells and the Passivation Effect of Hole-Transport Material on Trap States, Phys. Chem. Chem. Phys., 2015, 17:29501.

24. Y. Wang, D. Wu, L.-M. Fu, X.-C. Ai, D. Xu, J.-P. Zhang, Correlation between Energetic and Spatial Distribution of Intragap Trap States in the TiO2 Photoanode of Dye-Sensitized Solar Cell, ChemPhysChem, 2015, 16:2253.

25. D.-L. Gao, Y. Wang,* P. Zhang, L.-M. Fu, X.-C. Ai, J.-P. Zhang, New Insights into Electrolyte-Component Biased and Transfer- and Transport-Limited Charge Recombination in Dye-Sensitized Solar Cell, RSC Adv. 2015, 5:84959.

26. X.-J. Shi, Y. Wang, D. P. Wu, Y. J. Qin, X.-C. Ai, D. S. Xu, J.-P. Zhang, The Influence of Hierarchical TiO2 Microspheres on the Trap State Distribution and Charge Transport/Recombination Dynamics in Quantum Dot Sensitized Solar Cells, RSC Adv., 2015, 15:17798.

27. P. Zhang, Y. Wang, L.-M. Fu, X.-C. Ai, J.-P. Zhang, Application of a Simplified Diode Characteristic Model in Current-Voltage Curve Fitting and Evaluation of Photoelectric Parameters within Dye-Sensitized Solar Cell, Acta Phys. –Chim. Sin., 2015, 31(X):0001.

28. Y. Wang, D. Wu, L.-M. Fu, X.-C. Ai, D. Xu, J.-P. Zhang, Density of State Determination of Two Types of Intra-Gap Traps in Dye-Sensitized Solar Cell and Its Influence on Device Performance, Phys. Chem. Chem. Phys., 2014, 16:11626.

29. D. P. Wu, Y. Wang, H. Dong, F. Zhu, S. Gao, K. Jiang, L.-M. Fu, J.-P. Zhang, D. S. Xu, Hierarchical TiO2 Microspheres Comprised of Anatase Nanospindles for Improved Electron Transport in Dye-Sensitized Solar Cells, Nanoscale, 2013, 5:324

30. F. Zhu, H. Dong, Y. Wang, D. P. Wu, J. M. Li, J. L. Pan, Q. Li, X.-C. Ai, J.-P. Zhang, D. S. Xu, Dual-Functional Hetero-Structured TiO2 Nanotrees Composed of Rutile Trunks and Anatase Branches for Improved Performance of Quantum Dot-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 2013, 15:17798.