教师头像
王弋 Yi Wang
ywang@ruc.edu.cn


教育背景

中国人民大学化学系,学士(2007.9-2011.7

中国人民大学化学系,硕士(转博)(2011.9-2013.7

中国人民大学化学系,博士(2013.9-2016.6


工作经历

新加坡国立大学化学系,博士后(2016.6-2018.12

东京大学化学系,研究助理教授(2019.2-2020.5

中国人民大学化学系,讲师(2020.11-2021.8

中国人民大学化学系,副教授(2021.8-至今)


研究兴趣

超快光谱时间分辨光电技术

纳米晶化学合成非线性光学性质研究

钙钛矿光伏制备光电转换机理研究


科研项目

1、 国家自然科学基金面上项目,《离子迁移及其时空分布演化对钙钛矿光伏器件长期工作性能影响的动力学机制》,2024.01-2027.12

2、 北京市自然科学基金面上项目,《工作状态钙钛矿光伏器件中离子迁移对长期工作性能的影响研究》,2023.01-2025.12

3、 国家自然科学基金青年项目,《微纳结构材料缺陷态活性的宽时域激发扫描受激辐射光谱研究》,2022.01-2024.12

论文发表:

1. Z. Wu, S. Yuan,* S. Miao, Y. Li, W. Zhang, D. Cao, J. Nie, Y. Wang,* X.-C. Ai, J.-P. Zhang, Unraveling the rapid ion migration in perovskite solar cells by circuit-switched transient photoelectric technique, J. Chem. Phys., 2024, 160, 111101.

2. X. Huang, X. Wang, J. Gao, Y. Sun, J. Zhan, Y. Wang,* X.-C. Ai, J.-P. Zhang, Simultaneously Improved Photoluminescence, Stability, and Carrier Transport of Perovskite Nanocrystals by Post-Synthetic Perfluorobutanesulfonic Acid Treatment, Nanoscale, 2024, 16, 1115.

3. M. Zhang, Y. Sun, X. Wang, J. Gao, H.-Y. Wang, J. Lin,* Y. Wang,* L.-M. Fu, X.-C. Ai, J.-P. Zhang, Influence of Two-/Three-Dimensional Engineering on the Trap State Distribution and Photophysical Properties of Lead Halide Perovskite Polycrystals, J. Phys. Chem. Lett., 2023, 14, 1934.

4. Y. Li, S. Yuan, S. Miao, J. Wu, H.-Y. Wang, Y. Wang,* X.-C. Ai, J.-P. Zhang, Uncovering the Influence of Cation Composition Engineering on the Ion Migration Kinetics in Perovskite Solar Cells, J. Phys. Chem. C, 2023, 127, 14679.

5. S. Yuan, F. Lou, Y. Li, H.-Y. Wang,* Y. Wang,* X.-C. Ai, J.-P. Zhang, Targeted Suppression of Hysteresis Effect in Perovskite Solar Cells through the Inhibition of Cation Migration, Appl. Phys. Lett., 2023, 122, 133502.

6. W. Zhang, S. Yuan, Y. Zhang, H.-Y. Wang, Y. Wang, F. Wang,* J.-P. Zhang,* Perovskite Solar Cell Performance Boosted by Regulating the Ion Migration and Charge Transport Dynamics via Dual-Interface Modification of Electron Transport Layer, J. Phys. Chem. Lett., 2023, 14, 8620.

7. R. Kinegawa, J. Gala de Pablo, Y. Wang, K. Hiramatsu,* K. Goda,* Label-free Multiphoton Imaging Flow Cytometry, Cytometry Part A, 2023, 103, 584.

8. X. Wang,§ Y. Sun,§ Y. Wang,* X.-C. Ai, and J.-P. Zhang, Lewis Base Plays a Double-Edged Sword Role in Trap State Engineering of Perovskite Polycrystals, J. Phys. Chem. Lett., 2022, 13:1571.

9. S. Yuan,§ H.-Y. Wang,§ F. Lou, X. Wang, Y. Wang,* Y. Qin, X.-C. Ai, J.-P. Zhang, Polarization-induced Trap States in Perovskite Solar Cells Revealed by Circuit-switched Transient Photoelectric Technique, J. Phys. Chem. C., 2022, 126:3696.

10. D. Zhu, Y. Sun, S. Yuan, R. Gao, Y. Wang,* X.-C. Ai, J.-P. Zhang, Intragap State Engineering for Tunable Single-Photon Upconversion Photoluminescence of Lead Halide Perovskite, J. Phys. Chem. C., 2022, 126:2477.

11. Y. Du, D. Zhu, Q. Cai, S. Yuan, G. Shen, P. Dong, C. Mu*, Y. Wang,* X.-C. Ai,* Spacer Engineering of Thiophene-based 2D/3D Hybrid Perovskites for Stable and Efficient Solar Cells, J. Phys. Chem. C., 2022, 126:3351.

12. J. Wu, S. Yuan, D. Zhu, Y. Li, H.-Y. Wang, H. Dong, Y., Qin,* Y. Wang,* X.-C. Ai*, Silicon Dioxide Nanoparticles Increase the Incidence Depth of Short-Wavelength Light in Active Layer for High-Performance Perovskite Solar Cells, J. Phys. Chem. C., 2022, 126:7400.

13. S. Miao,§ S. Yuan,§ D. Zhu, Q. Cai, H.-Y. Wang, Y. Wang,* Y. Qin*, X.-C. Ai*, Mesoporous TiO2 Layer Suppresses Ion Accumulation in Perovskite Solar Cells, Phys. Chem. Chem. Phys., 2022, in press.

14. Y. Sun,§ X. Wang,§ X. Wang, J. Gao, Y. Wang,* X.-C. Ai, J.-P. Zhang, Low-Temperature Preparation of High-Quality Perovskite Polycrystalline Films via Crystallization Kinetics Engineering, ChemPhysChem, 2022, in press.

15. F. Lou, S. Yuan, X. Wang, H.-Y. Wang,* Y. Wang,* Y. Qin, X.-C. Ai, J.-P. Zhang, Distinguishing the Migration Time Scale of Ion Species in Perovskite Solar Cells. Chem. Phys. Lett., 2022, 796:139570.

16. Y. Sun,§ X. Wang,§ H.-Y. Wang, S. Yuan, Y. Wang,* X.-C. Ai,* J.-P. Zhang, Lewis Base-Mediated Perovskite Crystallization as Revealed by In Situ, Real-Time Optical Absorption Spectroscopy, J. Phys. Chem. Lett., 2021, 12:5357.

17. X. Liang, Y. Guo, S. Yuan, D. Zhu, Y. Wang,* Y. Qin, J.-P. Zhang, X.-C. Ai,* Simultaneous Transport Promotion and Recombination Suppression in Perovskite Solar Cells by Defect Passivation with Li-Doped Graphitic Carbon Nitride, J. Phys. Chem. C, 2021, 125:5525.

18. Y. Guo, S. Yuan, D. Zhu, M. Yu, H.-Y. Wang, J. Lin, Y. Wang, Y. Qin, J.-P. Zhang, X.-C. Ai, Influence of the MACl Additive on Grain Boundaries, Trap-State Properties, and Charge Dynamics in Perovskite Solar Cells, Phys. Chem. Chem. Phys., 2021, 23:6162.

19. M.-Y. Hao, H.-Y. Wang, Y. Wang, Y. Qin, J.-P. Zhang, X.-C. Ai, Effect of Energetic Distribution of Trap States on Fill Factor in Perovskite Solar Cells, J. Power Sources, 2020, 479:229077.

20. M. J. H. Tan, Y. Wang,* Y. Chan,* Solution-based Green Amplified Spontaneous Emission from Colloidal Perovskite Nanocrystals Exhibiting High Stability, Appl. Phys. Lett., 2019, 114:183101.

21. Y. Wang, M. Zhi, Y.-Q. Chang, J.-P. Zhang, Y. Chan, Stable, Ultralow Threshold Amplified Spontaneous Emission from CsPbBr3 Nanoparticles Exhibiting Trion Gain, Nano Lett., 2018, 18:4976.

22. Y. Wang, M. Zhi, Y. Chan, Delayed Exciton Formation Involving Energetically Shallow Trap States in Colloidal CsPbBr3 Quantum Dots, J. Phys. Chem. C, 2017, 121:28498.

23. Y. Wang, H.-Y. Wang, M. Yu, L.-M. Fu, Y. Qin, J.-P Zhang, X.-C. Ai, The Influence of Morphology and PbI2 on the Intrinsic Trap State Distribution in Perovskite Films Determined by Using Temperature-Dependent Fluorescence Spectroscopy, ChemPhysChem, 2017, 18:310.

24. Y. Wang, H.-Y. Wang, J. Han, M. Yu, M.-Y. Hao, Y. Qin, L.-M. Fu, J.-P. Zhang, X.-C. Ai, The Influence of Structural Configuration on Charge Accumulation, Transport, Recombination, and Hysteresis in Perovskite Solar Cells, Energy Technol. 2017, 5:442.

25. H.-Y. Wang,§ Y. Wang,§ M.-Y. Hao, Y Qin, L.-M. Fu, Z.-X. Guo, X.-C. Ai, J.-P. Zhang, Multiple-Trapping Model for the Charge Recombination Dynamics in Mesoporous-Structured Perovskite Solar Cells, ChemSusChem, 2017, 10:4872.

26. S. Gupta, W.-Y. Wu, S. Chakrabortty, M. Li, Y. Wang, X. Ong, Y. Chan, Hierarchical Multicomponent Nanoheterostructures via Facet-to-Facet Attachment of Anisotropic Semiconductor Nanoparticles, Chem. Mater., 2017, 29:9075.

27. M. Yu,§ Y. Wang,§ H.-Y. Wang, J. Han, Y. Qin, J.-P. Zhang, X.-C. Ai, The Influence of Morphology on Charge Transport/Recombination Dynamics in Planar Perovskite Solar Cells, Chem. Phys. Lett., 2016, 662:257.

28. H.-Y. Wang,§ Y. Wang,§ M. Yu, J. Han, Z.-X. Guo, X.-C. Ai, J.-P. Zhang, Y. Qin, Mechanism of Biphasic Charge Recombination and Accumulation in TiO2 Mesoporous Structured Perovskite Solar Cells, Phys. Chem. Chem. Phys., 2016, 18:12128.

29. J. Han, H.-Y. Wang, Y. Wang, M. Yu, S. Yuan, P. Sun, Y. Qin, Z.-X. Guo, J.-P. Zhang, X.-C. Ai, Efficient Promotion of Charge Separation and Suppression of Charge Recombination by Blending PCBM and its Dimer as Electron Transport Layer in Inverted Perovskite Solar Cells, RSC Adv., 2016, 6:112512.

30. Y. Wang, H.-Y. Wang, M. Yu, L.-M. Fu, Y. Qin, J.-P Zhang, X.-C. Ai, Trap-Limited Charge Recombination in Intrinsic Perovskite Film and Meso-Superstructured Perovskite Solar Cells and the Passivation Effect of Hole-Transport Material on Trap States, Phys. Chem. Chem. Phys., 2015, 17:29501.

31. Y. Wang, D. Wu, L.-M. Fu, X.-C. Ai, D. Xu, J.-P. Zhang, Correlation between Energetic and Spatial Distribution of Intragap Trap States in the TiO2 Photoanode of Dye-Sensitized Solar Cell, ChemPhysChem, 2015, 16:2253.

32. D.-L. Gao, Y. Wang,* P. Zhang, L.-M. Fu, X.-C. Ai, J.-P. Zhang, New Insights into Electrolyte-Component Biased and Transfer- and Transport-Limited Charge Recombination in Dye-Sensitized Solar Cell, RSC Adv. 2015, 5:84959.

33. X.-J. Shi, Y. Wang, D. P. Wu, Y. J. Qin, X.-C. Ai, D. S. Xu, J.-P. Zhang, The Influence of Hierarchical TiO2 Microspheres on the Trap State Distribution and Charge Transport/Recombination Dynamics in Quantum Dot Sensitized Solar Cells, RSC Adv., 2015, 15:17798.

34. P. Zhang, Y. Wang, L.-M. Fu, X.-C. Ai, J.-P. Zhang, Application of a Simplified Diode Characteristic Model in Current-Voltage Curve Fitting and Evaluation of Photoelectric Parameters within Dye-Sensitized Solar Cell, Acta Phys. –Chim. Sin., 2015, 31(X):0001.

35. Y. Wang, D. Wu, L.-M. Fu, X.-C. Ai, D. Xu, J.-P. Zhang, Density of State Determination of Two Types of Intra-Gap Traps in Dye-Sensitized Solar Cell and Its Influence on Device Performance, Phys. Chem. Chem. Phys., 2014, 16:11626.

36. D. P. Wu, Y. Wang, H. Dong, F. Zhu, S. Gao, K. Jiang, L.-M. Fu, J.-P. Zhang, D. S. Xu, Hierarchical TiO2 Microspheres Comprised of Anatase Nanospindles for Improved Electron Transport in Dye-Sensitized Solar Cells, Nanoscale, 2013, 5:324

37. F. Zhu, H. Dong, Y. Wang, D. P. Wu, J. M. Li, J. L. Pan, Q. Li, X.-C. Ai, J.-P. Zhang, D. S. Xu, Dual-Functional Hetero-Structured TiO2 Nanotrees Composed of Rutile Trunks and Anatase Branches for Improved Performance of Quantum Dot-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 2013, 15:17798.